
© ThoughtWorks, 2007

Agile Overview

Balachander Swaminathan (bala@thoughtworks.com)

1

mailto:bala@thoughtworks.com
mailto:bala@thoughtworks.com

© ThoughtWorks, 2007 2

Agenda for this session

• The Story of Software Development
• Lean Thinking
• Agile Values and Principles
• Agile Process
• Agile Practices
• Summary/Review
• Questions/Close

2

© ThoughtWorks, 2007 3

We started off with Software Engineering…

The Story of Software Development…

3

© ThoughtWorks, 2007 4

“Software Engineering is the application of
a systematic, disciplined, quantifiable

approach to development, operation and
maintenance of software: that is, the

application of engineering to software.”
IEEE Standard Computer Dictionary,

ISBN 1-55937-079-3, 1990

IEEE defines Software Engineering as….

4

© ThoughtWorks, 2007 5

Who does Software Engineering?

5

© ThoughtWorks, 2007 5

Who does Software Engineering?

5

© ThoughtWorks, 2007 6

For the space shuttle’s operating system

6

© ThoughtWorks, 2007 6

For the space shuttle’s operating system

6

© ThoughtWorks, 2007 7

Some Statistics - NASA’s Defect Density

7

© ThoughtWorks, 2007 7

Some Statistics - NASA’s Defect Density

The last 11 versions of the
space shuttle’s 420,000 line
systems had a total of 17

defects.

7

© ThoughtWorks, 2007 7

Some Statistics - NASA’s Defect Density

The last 11 versions of the
space shuttle’s 420,000 line
systems had a total of 17

defects.

7

© ThoughtWorks, 2007 8

One More Data Point

8

© ThoughtWorks, 2007 8

One More Data Point

8

© ThoughtWorks, 2007 9

Another real software engineering project

9

© ThoughtWorks, 2007 9

Another real software engineering project

Safeguard - Ballistic Missile Defense System

9

© ThoughtWorks, 2007 9

Another real software engineering project

• 1969-1975, 5407 person years
• Hardware designed at the same

time as software specs being
written

• Late changes in requirements not
an option

reqmts

20 %

design

20 %

code &

unit test

18 %

integration

testing

42 %

Safeguard - Ballistic Missile Defense System

9

© ThoughtWorks, 2007 9

Another real software engineering project

• 1969-1975, 5407 person years
• Hardware designed at the same

time as software specs being
written

• Late changes in requirements not
an option

reqmts

20 %

design

20 %

code &

unit test

18 %

integration

testing

42 %

Safeguard - Ballistic Missile Defense System

Did it Succeed?

9

© ThoughtWorks, 2007 10

Safeguard - Ballistic Missile Defense System…cont.

10

© ThoughtWorks, 2007 10

Safeguard - Ballistic Missile Defense System…cont.

Revised Project Statistics

10

© ThoughtWorks, 2007 10

Safeguard - Ballistic Missile Defense System…cont.

Revised Project Statistics
• The project was delivered according to specifications

10

© ThoughtWorks, 2007 10

Safeguard - Ballistic Missile Defense System…cont.

Revised Project Statistics
• The project was delivered according to specifications

• Cost: $25 Billion (not adjusted)

10

© ThoughtWorks, 2007 10

Safeguard - Ballistic Missile Defense System…cont.

Revised Project Statistics
• The project was delivered according to specifications

• Cost: $25 Billion (not adjusted)

• 1969-1975, 5407 person years

10

© ThoughtWorks, 2007 10

Safeguard - Ballistic Missile Defense System…cont.

Revised Project Statistics
• The project was delivered according to specifications

• Cost: $25 Billion (not adjusted)

• 1969-1975, 5407 person years

Operational for 133 days - Project terminated in 1978

10

© ThoughtWorks, 2007 10

Safeguard - Ballistic Missile Defense System…cont.

Revised Project Statistics
• The project was delivered according to specifications

• Cost: $25 Billion (not adjusted)

• 1969-1975, 5407 person years

‘By the time the 6-year anti-missile system project was
completed, the new missiles were faster than the anti-

missile missiles’

Operational for 133 days - Project terminated in 1978

10

© ThoughtWorks, 2007 11

Where did things go wrong?

11

© ThoughtWorks, 2007 11

Where did things go wrong?

• Software Engineering is a heavy weight methodology and such heavy
weight methodologies characteristically are most successful when:
– Requirements are stable
– Technology is well known and mature
– Everything happens as one would expect
– We are not taking on anything new or unknown
– We have done this many times before

11

© ThoughtWorks, 2007 11

Projects with these characteristics are few and far between.

Where did things go wrong?

• Software Engineering is a heavy weight methodology and such heavy
weight methodologies characteristically are most successful when:
– Requirements are stable
– Technology is well known and mature
– Everything happens as one would expect
– We are not taking on anything new or unknown
– We have done this many times before

11

© ThoughtWorks, 2007 12

Other Heavy Weight Methodologies

SEI/IEEE Project
Standards and

Definitions
Waterfall

Requirements
Management

RUP

Heavy Weight

12

© ThoughtWorks, 2007 12

Other Heavy Weight Methodologies

SEI/IEEE Project
Standards and

Definitions
Waterfall

Requirements
Management

RUP

Heavy weight methodologies work in some
instances, but there are high costs, and the

risk in using them in dynamic
environments is high.

Heavy Weight

12

© ThoughtWorks, 2007 13

So, heavy weight methodologies don’t seem to meet our
needs

 Is there an alternative?

13

© ThoughtWorks, 2007 14

Agenda for this session

• The Story of Software Development
• Lean Thinking
• Agile Values and Principles
• Agile Process
• Agile Practices
• Summary/Review
• Questions/Close

14

© ThoughtWorks, 2007 15

Lean Thinking – Eliminate Waste

• The Toyota Production System, 1988 (1978), Taichii Ohno
– Pull Scheduling - Just-in-Time Flow
– Expose Problems - Stop-the-Line Culture

• Study Of ‘Toyota’ Production System, 1981, Shigeo Shingo
– Non-Stock Production - Single Minute Setup
– Zero Inspection – Automatic Error Detection at Every Step

15

© ThoughtWorks, 2007 16

Lessons from Queuing theory

Source: Beyond Agile Software Development Becoming Lean, Mary Poppendieck, Poppendieck.llc

Utilization (%)

16

© ThoughtWorks, 2007 17

Applying Lean Principles to Software Development

Traditional Process

17

© ThoughtWorks, 2007 17

Applying Lean Principles to Software Development

Traditional Process

17

© ThoughtWorks, 2007 17

Applying Lean Principles to Software Development

Traditional Process

50 %
done?

17

© ThoughtWorks, 2007 18

Applying Lean Principles to Software Development…cont.

A better way of doing the same

18

© ThoughtWorks, 2007 18

Applying Lean Principles to Software Development…cont.

End-to-End
small slices of
work

A better way of doing the same

18

© ThoughtWorks, 2007 18

Applying Lean Principles to Software Development…cont.

End-to-End
small slices of
work

A better way of doing the same

20 % done = 100 % usable

18

© ThoughtWorks, 2007 19

Fix / Integrate $

Test

Code

Design
Specifications

Use Cases /
Functional Specs

Requirements Gathering

Project Plan/Estimation

$

Inception

$

$

$

Lean Principles applied to Software Development

19

© ThoughtWorks, 2007 20

Lower cost of
change through higher quality software

Traditional cost profile

20

© ThoughtWorks, 2007 20

Lower cost of
change through higher quality software

Traditional cost profile

Time spent:
• Finding defects
• Fixing Defects
• Regression Testing
• Deploying

20

© ThoughtWorks, 2007 20

Lower cost of
change through higher quality software

Agile system cost profile

Traditional cost profile

Time spent:
• Finding defects
• Fixing Defects
• Regression Testing
• Deploying

More defects
found
& corrected –
causes lower
cost of defect
correction

20

© ThoughtWorks, 2007 21

New Methodologies Emerged

XP

ScrumFDD

DSDMCrystal Family

21

© ThoughtWorks, 2007 22

Agenda for this session

• The Story of Software Development
• Lean Thinking
• Agile Values and Principles
• Agile Process
• Agile Practices
• Summary/Review
• Questions/Close

22

© ThoughtWorks, 2007 23

23

© ThoughtWorks, 2007 23

2000

23

© ThoughtWorks, 2007 23

FDD | Feature Driven Development (Jeff DeLuca)

DSDM | Dynamic System Development Method (Dane Faulkner)

Adaptive Software Development (Jim Highsmith)

Crystal (Alistair Cockburn)

SCRUM (Ken Schwaber)

XP | Extreme Programming (Kent Beck)

Lean Software Development (Mary Poppendieck)

2000

23

© ThoughtWorks, 2007 23

2001

23

© ThoughtWorks, 2007 23

Agile
manifesto

23

© ThoughtWorks, 2007 23

 “We are uncovering better ways of developing software by doing
it and helping others do it. Through this work we have come to
value:

Agile
manifesto

23

© ThoughtWorks, 2007 23

 “We are uncovering better ways of developing software by doing
it and helping others do it. Through this work we have come to
value:

– Individuals and interactions over processes and tools. Agile
manifesto

23

© ThoughtWorks, 2007 23

 “We are uncovering better ways of developing software by doing
it and helping others do it. Through this work we have come to
value:

– Individuals and interactions over processes and tools.
– Working software over comprehensive documentation.

Agile
manifesto

23

© ThoughtWorks, 2007 23

 “We are uncovering better ways of developing software by doing
it and helping others do it. Through this work we have come to
value:

– Individuals and interactions over processes and tools.
– Working software over comprehensive documentation.
– Customer collaboration over contract negotiation.

Agile
manifesto

23

© ThoughtWorks, 2007 23

 “We are uncovering better ways of developing software by doing
it and helping others do it. Through this work we have come to
value:

– Individuals and interactions over processes and tools.
– Working software over comprehensive documentation.
– Customer collaboration over contract negotiation.
– Responding to change over following a plan.

Agile
manifesto

23

© ThoughtWorks, 2007 23

 “We are uncovering better ways of developing software by doing
it and helping others do it. Through this work we have come to
value:

– Individuals and interactions over processes and tools.
– Working software over comprehensive documentation.
– Customer collaboration over contract negotiation.
– Responding to change over following a plan.

 That is, while there is value in the items on the right, we value the
items on the left more.”

© 2001 Agile Alliance. http://www.agilemanifesto.org

Agile
manifesto

23

© ThoughtWorks, 2007 24

Agile (XP) Values

24

© ThoughtWorks, 2007 24

courage

Agile (XP) Values

24

© ThoughtWorks, 2007 24

courage

communication

Agile (XP) Values

24

© ThoughtWorks, 2007 24

courage

simplicitycommunication

Agile (XP) Values

24

© ThoughtWorks, 2007 24

courage

simplicity

feedback

communication

Agile (XP) Values

24

© ThoughtWorks, 2007 24

courage

courage

simplicity

feedback

communication

Agile (XP) Values

24

© ThoughtWorks, 2007 24

courage

courage

simplicity

feedback

communication

Agile (XP) Values

Communication leads to valuable feedback which encourages simplicity which
allows for courage to change

24

© ThoughtWorks, 2007 24

courage

courage

simplicity

feedback

communication

Agile (XP) Values

Communication leads to valuable feedback which encourages simplicity which
allows for courage to change

respect

24

© ThoughtWorks, 2007 25

Agenda for this session

• The Story of Software Development
• Lean Thinking
• Agile Values and Principles
• Agile Process
• Agile Practices
• Summary/Review
• Questions/Close

25

© ThoughtWorks, 2007 26

How Agile fits into software delivery

Support

Support Documentation
Trained Support Staff

Develop

Working Software
Full Regression Test Suite

Business Realisation

Inceptio
n

Business Case
Baseline Requirements/ Stories

Baseline Budget

26

© ThoughtWorks, 2007 27

Inceptio
n

High level
requirements

Agile development
is an iterative and incremental process

27

© ThoughtWorks, 2007 27

Inceptio
n

High level
requirements

Agile development
is an iterative and incremental process

27

© ThoughtWorks, 2007 27

Inceptio
n

High level
requirements

Agile development
is an iterative and incremental process

27

© ThoughtWorks, 2007 27

Inceptio
n

High level
requirements

Agile development
is an iterative and incremental process

27

© ThoughtWorks, 2007 27

Inceptio
n

High level
requirements

Agile development
is an iterative and incremental process

27

© ThoughtWorks, 2007 27

Inceptio
n

High level
requirements release 1

Agile development
is an iterative and incremental process

27

© ThoughtWorks, 2007 27

Inceptio
n

High level
requirements release 1

Agile development
is an iterative and incremental process

27

© ThoughtWorks, 2007 27

Inceptio
n

High level
requirements release 1

release 2

Agile development
is an iterative and incremental process

27

© ThoughtWorks, 2007 27

Inceptio
n

High level
requirements release 1

release 2

Agile development
is an iterative and incremental process

27

© ThoughtWorks, 2007 27

Inceptio
n

High level
requirements release 1

release 2

release 3

Agile development
is an iterative and incremental process

27

© ThoughtWorks, 2007 27

Inceptio
n

High level
requirements release 1

release 2

release 3

Agile development
is an iterative and incremental process

27

© ThoughtWorks, 2007 27

Inceptio
n

High level
requirements release 1

release 2

release 3

Support

Agile development
is an iterative and incremental process

27

© ThoughtWorks, 2007 27

Inceptio
n

High level
requirements release 1

release 2

release 3

Support

Agile development
is an iterative and incremental process

Support required at the
end of each release

27

© ThoughtWorks, 2007 28

Agenda for this session

• The Story of Software Development
• Lean Thinking
• Agile Values and Principles
• Agile Process
• Agile Practices
• Summary/Review
• Questions/Close

28

© ThoughtWorks, 2007 29

Agile Practices

TEAM

Retrospectives

Iterations

IKO

User
Stories

Velocity
Metrics

Story Wall

Pair
Programming

Sustainable
Pace

Daily
Stand-ups

29

© ThoughtWorks, 2007 29

Agile Practices

ORGANIZATIONAL

Automated
Build/Deploy

Automated
Testing

Short
Releases

Coding
Standards

Continuous
Integration

On-site
Customer

Co-location

Collective
Ownership

TEAM

Retrospectives

Iterations

IKO

User
Stories

Velocity
Metrics

Story Wall

Pair
Programming

Sustainable
Pace

Daily
Stand-ups

29

© ThoughtWorks, 2007 29

Agile Practices

ORGANIZATIONAL

Automated
Build/Deploy

Automated
Testing

Short
Releases

Coding
Standards

Continuous
Integration

On-site
Customer

Co-location

Collective
Ownership

TEAM

Retrospectives

Iterations

IKO

User
Stories

Velocity
Metrics

Story Wall

Pair
Programming

Sustainable
Pace

Daily
Stand-ups

INDIVIDUAL

Refactoring

Simple Design

Test Driven

Development

29

© ThoughtWorks, 2007 30

Agenda for this session

• The Story of Software Development
• Lean Thinking
• Agile Values and Principles
• Agile Process
• Agile Practices
• Summary/Review
• Questions/Close

30

© ThoughtWorks, 2007 31

Summary

31

© ThoughtWorks, 2007 31

Summary
Use of Agile methodologies

– Helps handle changing requirements & priorities
– Lowers cost of change
– Provides better visibility into project progress
– Reduces risk
– Maximizes return on investment (business value prioritized)
– Encourages higher quality, simpler code
– Delivers business value early & often

31

© ThoughtWorks, 2007 31

Summary
Use of Agile methodologies

– Helps handle changing requirements & priorities
– Lowers cost of change
– Provides better visibility into project progress
– Reduces risk
– Maximizes return on investment (business value prioritized)
– Encourages higher quality, simpler code
– Delivers business value early & often

But, with this capability comes
– Constant business involvement
– A need for more discipline
– Greater emphasis on testing

31

© ThoughtWorks, 2007 32

Questions?

32

© ThoughtWorks, 2007 33

33

© ThoughtWorks, 2007

Agile Overview
Thanks for attending!

Balachander Swaminathan (bala@thoughtworks.com)

34

mailto:bala@thoughtworks.com
mailto:bala@thoughtworks.com

